Psychological research has demonstrated that as we experience a story several features affect the salience of its events in memory. These features correspond to who? where? when? how? and why? questions about those events. Computational models of salience have been used in interactive narratives to measure which events people most easily remember from the past and which they expect more readily from the future. We use three example domains to show that events in sequences that are solutions to narrative planning problems are generally more salient with each other, and events in non-solution sequences are less salient with each other. This means that measuring the salience of a sequence of actions during planning can serve as an efficient cost function to improve the speed, and perhaps also the quality, of a narrative planner.
Full Paper:
Citation:
Stephen G. Ware, Rachelyn Farrell. Salience as a narrative planning step cost function. In Proceedings of the IEEE Conference on Games, 2022. (forthcoming)
[bibtex]